

In-Time Role-Specific Notification
as Formal Means to Balance Agile Practices in

Global Software Development Settings

Dindin Wahyudin1, Matthias Heindl2, Benedikt Eckhard1, Alexander Schatten1, and
Stefan Biffl1

1Institute of Software Technology
and Interactive Systems

Vienna University of Technology,
Vienna, Austria

{Dindin, Eckhard, Schatten, Biffl}@ifs.tuwien.ac.at

2Support Center Configuration Management Siemens Program and Systems Engineering,
Vienna, Austria

{matthias.a.heindl}@siemens.com

Abstract. In global software development (GSD) projects, distributed teams
collaborate to deliver high-quality software. Project managers need to control
these development projects, which increasingly adopt agile practices. However,
in a distributed project a major challenge is to keep all team members aware of
recent changes of requirements and project status without providing too little or
too much information for each role. In this paper we introduce a framework to
define notification for development team members that allows a) measurement
of notification effectiveness, efficiency, and cost; b) formalizing key communi-
cation in an agile environment; and c) providing method and tool support to im-
plement communication support. We illustrate an example scenario from an in-
dustry background to explain the concept and report results from an initial em-
pirical evaluation. Main results are that the concept allows determining and in-
creasing the effectiveness and efficiency of key communication in a global
software development project in a sufficiently formal way without compromis-
ing the use of agile practices.

Keywords: Software project management, software process improvement, me-
thods and tools of software development, agile practices in global software de-
velopment, context-specific notification.

1 Introduction

Today business competition forces highly distributed and global software develop-
ment (GSD) players to be more responsive and adapt to uncertainty during develop-
ment processes (e.g., changes of requirements, technologies implementation; in-
volvement of partners/subcontractors), especially in novel product development [14].

 Wahyudin et al.

The Agile Manifesto1, promised that in higher customer satisfaction can be achieved
by addressing such uncertainty aspects and deliver working software frequently with
shorter timescale. However adoption of agile practices such as daily planning, daily
synchronization and daily build [7], [16], requires overall more intensive communi-
cation and information exchange among project team members regarding project
changes which is less infrequent and more expensive in typical plan driven GSD
project due to distant location, different time zone [9].
Eventually, in order to communicate every change of requirements and other signifi-
cant project artifact changes, typically a GSD team member who committed changes
notifies other team members in some informal way (e.g., by phone), which can add to
hidden communication costs in the team due to allocated effort and/or result in loss of
information or delay. Another common practice is team member individually sub-
scribes to particular work tools (e.g., a project manager may subscribe to SVN/CVS to
be notified for each developer check-in), although this approach is a cheaper way of
notification creation and transmission, however it is often that the target user receive
too much information as most of them are out of his current work context or interest.

Hence to effectively manage such a agile-distributed project one success factor is
to address issues specific to agile-distribution such as (a) to keep awareness of all
team members of relevant project status (b) information supply should meet the cur-
rent work context of each role, which is now hard to measure due to informal way of
communication between team members in GSD, and (c) reduction of cost and effort
of of key communications during development processes.

To address these issues, we propose a concept of “in-time role-specific notifica-
tion”. In-time and role-specific means to deliver the right information contain to
target user within their current work context (context aware). We define the notifica-
tion in a way that allows formal description of measurement such as: notification
effectiveness, completeness and correctness in order to reveal the value of exchanged
information between team members. We suggest such formalization also can be used
in agile contexts. To address the need for effort and cost reduction we extend the
functionality of GSD work tools by introducing plug-in integration of work tools to
support in-time role-specific notification in GSD settings.

Derived from industry background experiences, we present scenarios which illu-
strate the need for in-time role-specific notification. The remaining part of this paper
is organized as follows: Section 2 describes related work on agile methods adoption in
GSD settings and issues in controlling agile GSD projects. Section 3 introduces the
research questions and the concept of “in-time role-specific notification”. Section 4
illustrates scenarios from industry background and later in section 5 we provide initial
evaluation of the concept. Section 6 discusses the initial evaluation results with re-
lated work. Section 7 concludes and summarizes future research on in-time role-
specific notification to better support collaboration in distributed projects.

.

2. Related Work

Global software development (GSD) projects can benefit from agile practices to react
to changing requirements and project circumstances, however to maintain the over-
view and control of this project extra care has to be taken to maintain the timely
communication between distributed teams and team members. Formalization of key
communication and supported by proper infrastructure can take away the burden of

1 http://agilemanifesto.org/principles.html (accessed at 15 August 2007)

 In-Time Role-Specific Notification

communication“work” from team members while maintaining communication effec-
tiveness and efficiency. The key question is what kind of communication can be au-
tomated and how tools can support such automation

2.1 Agile Methods Adoption in GSD Settings

Boehm and Turner [2] describes balancing agility with discipline such as introducing
agile practices in plan-driven GSD projects may provide complementary values de-
rived from both approaches. As the usage of plan-driven GSD methodologies promise
access to larger competence developer pool with lower development costs, and work
effectiveness due to time zone exploitation [9]. While agile software development
offers several benefits for GSD such as adaptation to changing requirements, higher
customer satisfaction, rapid releases, and lower defect rates [1]. However, Boehm and
Turner also suggest that,
The key success is finding the right balance between agility and discipline within the
development process, which will vary from different project to project according to
circumstances and risk involved.

Several literatures in Distributed and Global Software Development report expe-
riences of agile methods practices in distributed project settings. Schawber [16] re-
ports a case study in scaling Scrum for large project in an outsourcing company. He
created multiple small to medium size Scrum teams to perform shorter Sprint cycle
and shorter daily Scrum meeting in order to reduce deliverable time of software prod-
uct. Other study by Martin Fowler [7] reports extreme programming (XP) adoption in
large distributed project in USA. The projects successfully used practices such as
continuous integration to reduce problems with integrating the work across multi-site
teams, short iteration, and multiple communications. To keep communication be-
tween teams effective yet relatively intensive as required by XP, he employs a “team
ambassadors” as communication buffer or team representative to interface with other
distributed teams. Nisar et al. [13] and Xiaohu [18] report their experiences in adopt-
ing extreme programming (XP) in offshore teams collaborating with onshore consum-
ers. The development work is done in offshore teams with tightly involvement of the
onshore customer. Xiaohu further explained the main issue for implementing XP prac-
tices was to reduce the communication delay and improve communication quality between
the customers and the offshore development team.

All these experience reports conclude that applied agile methods (such as XP and
Scrum) can benefit distributed development; however, research is needed to address
issues on communication between project team members which is limited and expen-
sive in GSD settings [14].

2.2 The Needs for Formalization in GSD and Agile Contexts

To deliver high quality software, in GSD projects typically multiple distributed teams
work on the software development. During collaboration, the team members spend
more than 50% development time for communication [15], and about 70% of this
time accounted for cooperative activities [17]. Other studies in distributed software
development suggests that direct /face to face communication is very important in
uncertain software development such as to fill in activity details, fix mistakes and
inaccurate prediction, counter measures for the effect of project changes [9], to ad-
dress coordination and interdependency issues [5]. Therefore, direct communication
limitation and breakdown regarding the recent changes in requirement and project
status make critical situation in software development processes. From GSD project

 Wahyudin et al.

management point of view it is very important to provide information that should
meet the roles expectation in order to keep the team member aware to current re-
quirement changes and status of development artifacts, and help to support the multi-
sites collaboration activities. However as direct communication and frequent formal
reporting of performance status in GSD is luxury and somehow very limited, hence
depict the need for an approach that can significantly reduce the effort and cost of
communication.

One approach is tool supported notification exchanges between teams and team
members by a network of notification server as proposed by deSouza et al. [5] which
benefit collaborative development such as in GSD by managing interdependencies of
task and artifacts [4]. They suggested that the event data flowing in the project system
network and work tools encapsulate critical information necessary to improve coordi-
nation of activities, and communication. An event and its attributes (such as require-
ment changes, automatic build) can represent stakeholder interactions or communica-
tion during a software project execution. However although notification server pro-
pose automation of some key communication in GSD, however deSouza et al. did not
mention how to formalize such notification (e.g. notification specification, rules, and
model) which is necessary to bring discipline to the automated notification generation
processes. We need to formalize in order to reduce cost, effort, and risk such as delay
which is necessary in GSD context. On the other hand we should not formalize eve-
rything because it reduces the flexibility which is necessary for certain aspects in the
project, too costly and not practical. Therefore, it is necessary to balance formalization
and flexibility using cost-benefit analysis.

3. The Concept of In-Time Role-Specific Notification to Balance
Agile Practices in GSD settings

This section motivates the research issues and the proposed concept of in-time role-
specific notification to address our research question. We also envision the GSD tool
support for collaboration of GSD team members, by introducing the integration of
plug-in which allows the information exchanges as part of team member work tools.

3.1 Current Reality of Agile-Global Software Development

To examine the cause and effect logic behind current agile adoption in GSD set-
tings, we employed Current Reality Tree suggested (CRT) in Goldratt’s theory of
constraints [3] as problem analysis tool. CRT begins with identifying the undesirable
effects we see in today practices in GSD and trace back to a few root causes, or a
single core problem. Later we can select what to improve that will have the greatest
positive effect to agile-GSD development. Figure 1 illustrates the current reality of
typical Agile-GSD project, the lower level represent the root cause, while the upper
level signify undesirable effects.

 The rectangles represent entities such as core problem, root cause, effect and un-
desirable effect, while an ellipse represents AND operator and arrow signify the im-
pact direction.

 In-Time Role-Specific Notification

Fig 1 Current Reality Tree of Agile-GSD Project, undesirables effects such as delay and
motivation degradation of developer can be derived from (a) higher effort and higher cost to
retrieve information of project status and (b) the poor quality of conveyed information

We grouped the entities into 4 groups to avoid confusion of reader due to number
of entity represented in this model. The first group (box I) represents typical characte-
ristics of global software development process as suggested by many literatures in
distributed and global software engineering domain such as in [9] [10] and [12]. The
distributed participants with different culture, different language may have impact in

Geographical
Distributed

Different Time Zones
and Distant Location

Different Culture and
Languages

Dependencies among
activities and artifacts

Constantly Changing
Environment

Requires Intensive
Communication

Less synchronous/face
to face communication

Team Members often
have misunderstanding

Informal
Communication

Tool subscription

Team member often
miss vital information
due to lost or delay

Team member receives
too much information

Team member has lack
awareness of project

status

More reading effort
needed

Reduce team
member’s motivation

Increase possibility of
rework and delay

II. Dependency
Aspect and
Uncertain

Environment

I. GSD
Characteristics

III. Typical
Communications of

Changes

IV. Undesireable
Effects of Agile-GSD

 Wahyudin et al.

the content of information being exchanged, as the result team members sometimes
have misinterpretation or misunderstanding of the conveyed message, on the other
hand the distant location and different time zone, make face-to face communication
such as daily synchronization more expensive, worth more effort and hard to coordi-
nate.

The second group (box II), express the need for more intensive communication
among team members due to their work dependencies and changing in project envi-
ronment (e.g. requirement and artifact changes), however as direct communication is
infrequent in GSD context, in group 3 (box III) reveals that the communication of
changes are committed either in informal way or by subscribing to work tools as de-
scribed in introduction.

The fourth group (box IV) illustrates the undesirable effects due to current commu-
nication methods in Agile-GSD project. As the team member missed vital information
this will cause lack of awareness of important project status concerning his work
context. This information deficiency may lead team member to perform a task with
flaw direction, and increase the possibility of versioning problem, rework and delay.
The tool subscribed method, often shower a team member with information spam;
consequently he needs more effort to select which information is relevant for his cur-
rent work context, which sometimes can be a frustrating task. Both of these undesira-
ble effects (lack of awareness and more reading effort) will decrease the developer
motivation, and eventually will have larger impact to overall development process.

3.2 Research Issues

Based on Current Reality Tree in section 3.1, direct communications between team
members are extensively required by agile methods but missing in GSD due to cost
and effort allocation as the result of geographical distribution. Hence, the agile prac-
tices adoption in GSD settings will face greater challenge to traditional GSD project.
This hybrid Agile-GSD projects requires a novel method which promise cost and
effort reduction in information exchanges between GSD team members. One solution
is to automate the communication supported by tools as described in related work,
however the challenge is how much formalization of communication is enough, as in
agile context, we still need to maintain some aspect of flexibility due to project uncer-
tainty. Therefore in this paper we propose two research questions which are:
(a) What kind of communication can be automated during development processes?
(b) How can tools support such automation?

To address these research issues, we introduce a framework to define notification
for development team member which allows:
o Measurement of notification effectiveness, and effort. To determine the effec-

tiveness and effort of key communication and the value of notification in global
software development project in formal way without compromising the use of
agile practices.

o Formalizing key communication in an agile environment. We provide example
scenarios from industry background to explain the concept of formalization of
key communication in form of notification exchanges between GSD team mem-
bers

o To provide method and tool support to implement communication support. Tool
support to increase the effectiveness and efficiency of key communication in
global software development project in formal way without compromising the

 In-Time Role-Specific Notification

use of agile practices. We also perform initial empirical evaluation from one of
the scenarios as the proof of concept

3.3 In-Time Role-Specific Notification: Definition and Concept

In global software development setting, collaboration between team members from
multiple sites is essential. Figure 2 illustrates the typical work and collaboration in
GSD, here a team member first assigned a role within specified work context, e.g.
project manager, developer, and tester, in certain location. In agile practices, role
assignment may not be a static position, for example a team member can be assigned
as software architect at the beginning of the project, later he can act as a developer
once the designs and specifications completed.

Fig 2 GSD Team Member role, and the need for notification based on his current work de-
pendencies

Based on current assigned role, a team member should perform some activities or
task typically supported by a set of work tools to deliver software artifacts. Every
change of software artifacts can be considered as an event which is also typically
recorded in the work tool where the event happened. Typically works in GSD envi-
ronment are not stand alone; a team member may have dependencies of artifact devel-
oped by other team members. Based on these dependencies, a team member needs to
be notified for certain events represent changes of the artifact. Hence he should speci-
fy a notification and retrieve the correct notification in time. To receive information
which is delayed, partial or not relevant will reduce a team member work performance
and also may affect other development tasks performed by other team members who
depend on his deliverables, as the consequences the project may face some risky con-
dition such as version conflict, release delay, and quality reduction of to-be delivered
software.

3.3.1. In-Time Role-Specific Notification Definition

We define a notification as an object that collects information about status changes,
errors, early warnings and other time-relevant project status information to be pre-
sented to target roles. A notification can be triggered by events, correlation of events
or measurement data passing pre-defined threshold during project execution. For

 Wahyudin et al.

example a tester needs to be notified when a developer closed a development ticket
(ticket closing events), which required to be tested before adding the new code-set to
current body of code of to-be delivered software.

The meaning of in-time aims to localized notification to meet the user expectation
of particular timely effective information awareness, as he may only concern to be
notified for relevant project status changes in particular time of deliverable (imme-
diately, or summarized) and within his current work context (e.g. what I’m doing
now, with whom/what my work connected with) and consider other out of context and
delayed notification as information waste or noise. Meanwhile the role-specific term
means to deliver the notification to the right notification user.

3.3.2. Notification Specification: How Much Formalization is enough?

The intention to specify a notification is to provide correct notification for target user
in formal way. In our context a notification derived from selected key communication
between team members. We use three selection criteria to select which key communi-
cations are worth enough for formalization and automation by tool support, such as:
(a) the key communication is significantly important to support collaboration of GSD
team members according to circumstances in development processes; (b) repetitive or
frequently occurrences in larger part of development life cycle(e.g. hours and daily
occurrence); and (c) data transmitted has significant probability of risks, such as to
become lost, error, impartial or delayed in manual way of transmission. Table 1 pro-
vides some examples of key communication selection for formalization and automa-
tion, these key communications passed the first selection criteria as considered impor-
tant to support collaboration in GSD. Based on our Industry background we assumed
the values of the selection criteria for each key communication as described in table 1,
communication of changes of requirements and components are feasible for formali-
zation and automation. After selection of key communication, the next step is to spe-
cify what kind of notification should be provided for target user. The specification
also needed to localize the scope of formalization as we only need to formalize sever-
al relevant aspect of key communication, and leave the rest to stay flexible.

There are several elements of key communication that should be formalized to spe-
cify a notification such as: processes performed during communication task (e.g.
impact analysis of requirement change, decision approval for requirement change), all
roles involved in information exchange (e.g. project manager as target user, and de-
veloper as events provider in changing requirement scenario, see section 4), data
transmitted during communication (e.g. traceability information of requirement),
distributed events to publish-subscribed the notification (e.g. source code element
changes published by the developer to trigger notification consumed by the project
manager), and delay allowance of notification represents the time between arti-
fact/requirement changes and capturing of notification by target user.

The next step of formalization is to model the work-flow to trigger the notification
from abovementioned elements. We can use a process centric model such as IDEF0
or extension of UML proposed by Penker and Eriksson [6]. In this paper we use
Penker and Eriksson extension to illustrate notification for proposed scenario in sec-
tion 4, as this extension offers more capability in expressing and formalization of
notification by mitigating the ambiguity often associated with narrative specifications
or scenarios.

 In-Time Role-Specific Notification

Table 1 Examples of Key Communication Selection in Agile-GSD settings

Key Communi-
cations

Roles Involved Occurrence Risk (lost
and delay)

Need for
Formalization

Changes of re-
quirement

Project manager,
developer, tester

Medium High Yes

Requirement
traces

Project manager,
developer

High High Yes

Component
changes

Developer High High Yes

Fix mistakes in
code set

Developer High Low No

Fill in plan Project manager,
Technical leader,
QA

Low Low No

3.3.3. Rules Definition and Notification Escalation

In order to deliver and present notification in-time and within context of particular
roles, those we need to formulate the notification rule. The syntax to formulate notifi-
cation rules consists of the following parts: Notify <whom> in <what way> (e.g., e-
mail, SMS, entry in change log) by <when> (e.g., immediately; batch every hour/day)
concerning <in which context> (e.g. implement particular task, managing certain
project) due to <change event> (e.g. requirement changes, component changes).

Whom: list of persons, roles, or groups. Change can be any observable or derived
event or state change regarding an artifact or project state, e.g., some expected event
did not happen during the given time window. While context can be any task that
assigned to the user, and selected as his current work focus or need to be notified
when certain changes occur. For example in requirement changes scenario as de-
scribed in section 4, a notification for John a developer if particular requirement
changed, can be described as: Notify John in his Eclipse workspace, immediately con-
cerning his task T1 to implement requirement R1 due to changes of Requirement R1.

If a condition can not be handled by the system based on the rule set, and then the
issue should be escalate to a sufficiently competent role that can provide a reasonable
decision. For example in continuous integration build scenario as applied in XP adop-
tion in distributed off-shore project by [13], in this scenario typically a developer will
automatic build his code before send it to the repository. For each build he will get
notification of build status either success or broken build, however in certain situation
such as in an approaching deadline, if a developer experiences too many build failures
which is risky situation as there is possibility of he may not deliverer his task on-time.
This issue should be escalated to the project manager, so then he can take some ap-
propriate counter measures to address such risk. This example reveals the benefit of
notification as early warning sign that may be used to complement information from
developer, and to reduce delay for information dissemination.

 Wahyudin et al.

3.3.4. Derived Measurement

The value of in-time role-specific notification influenced by several factors that can
be measured such as:
o Effort (E) is an accumulation of work hours to prepare (Tpr), to process (Tpc)

and to create notification of changes (Tcr). Integrated tools’ plug-ins supported
notification should be able to reduce significantly the overall effort allocated by
the GSD team members.

Here we can formulate effort as E= Tpr+Tpc+Tc (1)
o Correct Notification (CN) is number of notifications created and transmitted to

target user within the scope of pre-defined specification.
o False Positives (FP) is number of notifications determined not in the scope of

correct specified notifications for a target user.
o False Negatives (FN) indicates number of notifications determined in the scope

of correct specified notifications but do not reach target users
o Effectiveness (EF) is number of correct notifications (CN) in proportion to all

generated notifications (GN) for a specified notification set (SN). We expect that
tool support increase notification transmission effectiveness as expected in agile
context.

Here we can formulate: EF= CN/GN (2)
 GN = CN + FP+ EF (3)

These factors are considered as general measurement of value of notification and
should be applicable to almost every scenario in GSD and Agile context. We can use
this measurement for balancing agility and formalism in notification, by comparing
the results of several alternatives of delivering the notification. For example in scena-
rio described in section 5 we can compare the effort needed by two traditional alterna-
tives of requirement tracing (with Excel and Req.Pro) with our proposed plug-in
alternatives, if the results reveal that plug-in offers significant effort reduction with
respect to cost to develop such plug-in, then GSD project manager may need to con-
sider to apply such alternatives, on the other hand if the effort reduction is consi-
dered not worth enough compare to plug-in development’s cost and other set-up ef-
fort, then PM may just discard the idea of the plug-in approach.

3.4 Tool Integration and Support

In this work we propose the presentation of notifications in the user interface of a tool
routinely used by the target role in order to reduce team member refusal due to
”another-tool-syndrome”. Tool support mostly consists of tool sets (requirements,
development, configuration, tracking and test tools) that can interact in principle pro-
viding the basis for redundancy-free, consistent storage of data and exchange of data
between tools (via tools interfaces). Tool-based notification also promise cost-
reduction which make information exchange can be much more affordable in GSD
context, moreover a comprehensive tool support is needed to enable consistent, error-
free, and up-to-date information exchange in a GSD context. The interfacing between
tools using plug-ins can support information exchange of events recorded by tools
during project execution.

Tool support allows to implement notifications using a rule engine, which can be
captured and processed into meaningful information or notification using complex
events processing techniques [11] e.g., a correlated events processor (CEP). Figure 2
illustrates how GSD work tools can be connected to an enterprise service BUS (ESB)
using plug-ins (plug-ins integration). These plug-ins captured particular events occur

 In-Time Role-Specific Notification

in the tools, and publish the events to the ESB in XML format. These events later
captured and processed by the CEP, and if a measurement threshold or certain rules
apposite with an event or correlated events then a notification (also in XML format) is
triggered and published to the ESB.

Some subscribed tools’ plug-ins consumes the notification and presents it to the
user as part of their work tools. In summary these plug-ins act as notification or event
publisher and as notification subscriber/consumer, and can be configured dynamically
by the user (GUI-based configuration for a general user and an event selection pattern
language for more sophisticated user).

In continuous integration practices, some activity triggering automation (e.g., au-
tomatic build and automatic test) benefit agile software development by reducing
effort and time for certain tasks, these activities also may trigger events that consider-
able worth noting for roles involved in development process such as build status,
build error. Correlating these events (e.g. correlating build failures for particular task
in certain period of time) can derive time-relevant status information such as quality
degradation and quality prediction of software product.

Fig 3 Integrated tool support for In-time Role-Specific Notification in Agile-GSD
settings

4 Example Scenario

The following scenario illustrates how in-time role specific notification provides sup-
port to current global software development especially when agile practices intro-
duced to the development processes. We provide initial empirical evaluation based on
the result of implementation of the scenario. In this scenario several distributed team
members such as a project manager on site A who has responsibility in requirement
management which later implemented by the developer from site B. The project
manager manages the requirement in requirement management tool such as Requisite
Pro, while the developers use IDE tool such as Eclipse as their development platform.
If a change of requirement X arrives from the customer, accordingly the project leader
performs impact analysis, in order to decide whether such change should be imple-
mented or not (see figure 3), he needs to know the current status from developer who
assigned to implement the requirement X, and what kind of impact may derived by
this change e.g. risks and cost.

 Wahyudin et al.

Typically developers in GSD create some Excel matrices to store traceability in-
formation of implementation status which can be considered as ad-hoc approach or
systematically draw a license for the project’s requirements management tool (e.g.
Req.Pro). Project manager then manually assesses this information, performs the
analysis and creates an impact report as the basis of decision approval whether a
change should be implemented or not. Based on this scenario, we can define the im-
pact analysis as the processes, project manager and developer as roles involved in
this process, and traceability information transmitted by the developer as key com-
munication to be automated. Let’s assume that we extended the functionality of tools
used by developer (Eclipse) and project manager (Req.Pro) with plug-ins to provide
interface between the two tools. In this extended scenario whenever a developer
committed some changes in his code set, the Eclipse plug-in will store this event and
correlate these changes to relevant requirement (Req.X), and automatically publish a
requirement traces notification (N) consists of developer ID, source code elements
that have been changed, date of changes and its correlation with Req.X. The Req.Pro
plug-in which subscribed for this type of notification then captures notification N
from the integrated work tools BUS (see figure 2), and present this notification in the
project manager’s Req.Pro interface.

Fig 4 Impact Analysis is performed by project manager based on requirement tra-
ceability information from the developer

Despite of cost and effort reduction, as result of automation, this approach can ben-
efit distributed project controlling as a project managers can decide if a requirement
should be changed although development has already been started. They can also
easily get in contact with the developer that is working on it to ask him about the
current progress or potential implications. As the consequences notification may en-
hance the impact analysis processes in order to avoid potentially dangerous situation
such as to put barrier to the developer against risky or unnecessary changes (as in
Scrum before a Sprint release).

 In-Time Role-Specific Notification

5 Initial Empirical Evaluation

We performed an initial feasibility study of the integrated tool plug-in support for
scenario of requirement traces to support impact analysis as described. In order to
compare the plug-in-based approach with other alternatives, we observed a set of
projects at Siemens PSE to evaluate the tracing efforts, correctness and completeness
of each alternative. The projects were different in domain (transportation systems,
telecommunication, etc.), but similar in size: medium size projects, with 2 to 4 sites
(e.g., Austria, Romania, Slovakia), and between 10 and 60 team members.

The number of requirements of each project is between 150 and 300; number of
source code methods to be traced range from 6000 to 13000, while number or traces
per requirements is between 150 and 300. Based on these project setting factors we
compared the effort to trace requirements to source code methods, the completeness
and correctness of traces for the tracing alternatives described in section 4. For more
detail information and scenario of evaluation can be found in Heindl et. al [8].

Comparison of the 3 alternatives of requirement tracing, reveal that using plug-in
alternatives for tracing requirement may significantly reduce the effort of developer
teams and increasing completeness and correctness of tracing.

Heindl et al, also reported such improvement lead to higher developer motivation,
as developer will have more awareness of changes in requirement, lower effort to
trace the requirement and more confidence of correctness of trace information, which
also reduce possibility of delay or rework.

Table 2 Comparison of Tracing Effort and Tracing Qualities, source Heindl et al. [8]

 Effort for tracing (in working
hours)

Tracing Qualities

For 150
requirements

For 300
requirements

Correctness
(%)

False Positives
(%)

Ad-hoc 450 to 1350 900 to 2700 5% to 30% 5-10%
Systematic 50 to 167 99 to 334 20% to 40% 10%
Continuous/Plug
in

8 to 26 16 to 53 60% to 75% 5%

In this paper we compare three alternatives of requirement tracing, and to investi-

gate the continuous tracing approach using in-time role-specific notification concept
on the effort and quality of traces. However as reported by Heindl et. al, this approach
will have greater benefit for medium to large projects, as for smaller projects, the
tracing effort might be too high compare to traditional ad-hoc tracing. Automation of
notification in this scenario also has to consider the amount of investment needed
especially in project with a low number of requirements and requirement changes.

 We use requirement tracing scenario for our initial evaluation because we believe
that changing of requirements is the most prominent factor in current software devel-
opment which need more attentions from the development teams.

6 Discussion

From related work, we can conclude that agile practices adoption in GSD settings
may provide several benefits needed by current industry. However one challenge is to

 Wahyudin et al.

provide a means of communication and information exchanges between team mem-
bers concerning occurrence of changes. Referring to our initial research questions,
distributed project needs to define some key communications which is feasible for
automation in order to reduce cost and effort.

In our initial feasibility study we selected traceability of requirement changes as the
key communication that can be automated. The integration of plug-in for developer’s
tool (Eclipse) and project manager’s tool (Req.Pro), provide an interface between the
tools, which allows automating this key communication.

The framework also allows measurement of the value of notification, as in our ini-
tial empirical study we found that integration of tool support significantly reduces
the effort for requirement tracing compared to more expensive time consuming alter-
natives (e.g. using Excel and Requisite Pro) which are commonly used in current
GSD projects. However the evaluation of the concept from other context of agile-
distributed development such as different development process scenarios and measur-
ing it’s the impact to overall development performance will be further work.

7 Conclusions

In this paper we proposed a concept of a role-specific and context-aware notification
supported by integrated tools in a distributed project. The goal was to provide an
approach to complement current distributed project controlling in order to address the
need for more coordination and interdependency issues as the results of application of
agile practices in GSD settings.

Formalization and automation of some key communications between team mem-
bers in form of notification may provide benefits such as cost and effort reduction
which is necessary in an environment where intensive direct communication is re-
quired due to agile practices but seems limited in GSD settings. Moreover we suggest
that such notification should provide GSD team members more timely-effective in-
formation awareness of project status changes with respect to their current work con-
text. Our initial feasibility study reveals promising result, however the results also
depict the need for empirical evaluation of the concept in industries which use agile
methods in their distributed projects and employ larger size of development team,
which we consider as future work.

Acknowledgments. We would like to thank Franz Reinisch from Siemens PSE Aus-
tria and Prof. A Min Tjoa from IFS TU Wien for their contributions in this paper.
This paper has been partly supported by The Technology-Grant-South-East-Asia No.
1242/BAMO/2005 Financed by ASIA-Uninet. More details of In-time Role-Specific
Notification can be seen in our technical report, available at
http://qse.ifs.tuwien.ac.at/publications.htm.

 In-Time Role-Specific Notification

References

1. Boehm, B.: Get ready for agile methods, with care. Computer 35(1) (2002) 64–69
2. Boehm, B., Turner, R.: Balancing Agility and Discipline: A Guide for the Perplexed. Addi-

son-Wesley Longman Publishing Co., Inc., Boston, MA, USA (2003)
3. Dettmer, H,: Goldratt’s Theory of Constraints: A System Approach to Continuous Im-

provement. Quality Press (1997)
4. de Souza, C., Redmiles, D., Mark, G., Penix, J., Sierhuis, M.: Management of interdepen-

dencies in collaborative software development. In: International Symposium on Empirical
Software Engineering, 2003. ISESE 2003. Proceedings. 2003. (2003) 294–303

5. de Souza, C., Basaveswara, S., Redmiles, D.: Supporting global software development with
event notification servers. In: the ICSE 2002 International Workshop on Global Software
Development. (2002)

6. Eriksson, H.E., Penker, M.: Business Modeling With UML: Business Patterns at Work.
John Wiley & Sons, Inc., New York, NY, USA (1998)

7. Fowler, M.: Using agile process with offshore development.
http://www.martinfowler.com/articles/agileOffshore.html (June 2007)

8. Heindl, M. Reisnich F., Biffl, S. : Integrated Developer Tool Support for More Efficient
Requirements Tracing and Change Impact Analysis,. Technical Report. Institute f. Software
Technology and Interactive System, Vienna University of Technology (2007)

9. Herbsleb, J., Moitra, D.: Global software development. Software, IEEE 18(2) (2001) 16–20
10. Herbsleb, J.D., Paulish, D.J., Bass, M.: Global software development at Siemens: expe-

rience from nine projects. In: ICSE ’05: Proceedings of the 27th international conference on
Software engineering. (2005) 524–533 xxx

11. Luckham, D.: The Power of Events: An Introduction to Complex Event Processing in Dis-
tributed Enterprise Systems. Addison Wesley (2002)

12. Mockus, A., Herbsleb, J.: Challenges of global software development. In: Seventh Interna-
tional Software Metrics Symposium, 2001. METRICS 2001. Proceedings.. (2001) 182–184

13. Nisar, M., Hameed, T.: Agile methods handlfing offshore software development issues. In:
8th International Multitopic Conference, 2004. Proceedings of INMIC 2004.. (2004) 417–
422

14. Paasivaara, M., Lassenius, C.: Could global software development benefit from agile me-
thods? International Conference on Global Software Development (2006) 109–113

15. Perry, D.E., Staudenmayer, N., Votta, L.G.: People, organizations, and process improve-
ment. IEEE Softw. 11(4) (1994) 36–45

16. Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Prentice Hall PTR,
Upper Saddle River, NJ, USA (2001)

17. Vessey, I., Sravanapudi, A.P.: Case tools as collaborative support technologies. Communi-
cation of ACM 38(1) (1995) 83–95

18. Xiaohu, Y., Bin, X., Zhijun, H., Maddineni, S.: Extreme programming in global software
development. In: Canadian Conference on Electrical and Computer Engineering, 2004.. Vo-
lume 4. (2004) 1845–1848 Vol.4

